

Finding Juggling Transitions with Smart

Engineering Systems

by

Curtis Miller

EMgt 390

Dr. Cihan H. Dagli

May 1997�
Table of contents

� TOC \o "1-3" �I. Introduction to Siteswap	� GOTOBUTTON _Toc387501292 � PAGEREF _Toc387501292 �3��

II. Pattern Transitions – The Problem	� GOTOBUTTON _Toc387501293 � PAGEREF _Toc387501293 �5��

III. Neural Network Approach	� GOTOBUTTON _Toc387501294 � PAGEREF _Toc387501294 �6��

IV. Genetic Algorithms	� GOTOBUTTON _Toc387501295 � PAGEREF _Toc387501295 �7��

A. The Initial Gene Pool	� GOTOBUTTON _Toc387501296 � PAGEREF _Toc387501296 �7��

B. The Next Generation and Fitness	� GOTOBUTTON _Toc387501297 � PAGEREF _Toc387501297 �8��

C. Mating and Mutation	� GOTOBUTTON _Toc387501298 � PAGEREF _Toc387501298 �8��

V. Search Results	� GOTOBUTTON _Toc387501299 � PAGEREF _Toc387501299 �10��

VI. Multi-Hand Notation (MHN)	� GOTOBUTTON _Toc387501300 � PAGEREF _Toc387501300 �13��

VII. Neural Network Simulation	� GOTOBUTTON _Toc387501301 � PAGEREF _Toc387501301 �15��

VIII. References	� GOTOBUTTON _Toc387501302 � PAGEREF _Toc387501302 �17��

��
I. Introduction to Siteswap

	Juggling has been around for many centuries as an art form. It has only been within the past fifteen years that juggling has become the interest of both scientist and mathematicians alike. It has been during this past decade that various numerical systems have developed in order to ease the explanation of various patterns to jugglers across the world. The most widely accepted notation, siteswap, was developed in 1985 by three independent people: Bruce Tiemann, Caltech; Paul Klimek, Santa Cruz; and Mike Day, Cambridge. The work of these three men eventually laid the foundation of much more mathematical formulation of the juggling time and space.

	The use of siteswap notation has become quite popular over recent years because of the ease of use. While it does not define more complex problems and patterns in it’s basic forms, extensions have been developed to add more robustness to the system. Patterns are first displayed using a string of integer numbers. These numbers display the number of throws necessary before that particular object will be thrown again. Each throw instance in the pattern represents an alternating hand sequence also. By using this idea, the basic three ball cascade would be denoted by:

3 3 3 3 3 3 3 3 3 3 3 3

L R L R L R L R L R L R

However, to ease the use even more, one is able to only report the first period of any pattern. This would make the above pattern become [3].

	The basic pattern here for N number of objects can easily be displayed by the vector [N]. This allows you to easily see how many objects are within a pattern. Patterns that are more complex and have a period greater than one (L>1), can still be easily checked for object number. A simple act of finding the mean of the individual throw values will display the number of objects.

	A pattern that does not have an integer value for the number of objects is not feasible within the discussion of this project. While a non-integer value is sufficient for refusal, an integer value is not sufficient for acceptance. This can be seen by using the patterns [5 4 3] and [3 4 5]. While both of these have a mean of four, only the second one is a possible pattern. By finding a landing schedule for each object (a time N throws in the future), one sees that the first three objects in pattern one will land simultaneously. Without the ability to catch and throw more than one object at a time (multiplexing), this could not work. While that is possible, but not discussed here, the pattern would have to be extended to display that time instance.

	From this very basic introduction to siteswap, one can see the ease of use. While there are some complex mathematical roots, it is a system that requires very little math skills to use. That has been a major factor in it’s rise of popularity over the past ten years. While other systems, such as state diagrams and ladders, have been developed, they have seen little use because of the complexity and the difficulty in transferring information in those formats.

�
II. Pattern Transitions – The Problem

	For the past several years, it has come into question about how to find transitions between two patterns. This pursuit has led to more of a mental exercise for most jugglers. There has not been found a suitable and effective way in order to find transitions. There is currently one computer program available over the internet that will demonstrate various transitions. One drawback from the program is that the transitions are done without the user know what they are. Also, they are often not transitions that are simple or “juggler friendly.”

	For this project, I wanted to develop a “smart” transition engine. I was looking for something that could give the user an array of transitions. In order to ease the initial robustness problem, I decided to focus only on patterns that use the same number of objects and where no more than one can land at any given time. Another limitation that I used was that of a maximum throw value of nine. In actual juggling practice, there are few people in the world that can consistently make throws of values larger than that.

	There are some combinations of patterns that can be considered “steady state.” This implies that there is no transition needed. While no transition may be necessary, I felt it would be of interest to find other transitions. By doing this, one can make the pattern transitions more flashy and, hopefully, crowd pleasing.

�
III. Neural Network Approach

	My original approach to the transition solution was to use a neural network. I chose this for two reasons. One was that I am relatively familiar with the neural network theories. The other reason was the ability of neural networks to learn patterns and optimize solutions.

	From the beginning I realized this approach would require quite a lot of work. The first problem I noticed was that juggling patterns don’t all have the same periodicity. Because of that, there was no sure size for the input vectors. Even by using the concept of “dead” or inactive neurons, the system would not reach the robustness I had hoped for. A reason for that is the uncertainty in the length of the desired output vector.

	Since there is always more than one possible transition for two patterns, the length of the output is very crucial. For an initial pattern of period L and transition of length n, there is always a transition of length L+n. I was looking for a system that could find transitions of varying le
